博客
关于我
leetcode 004.寻找两个有序数组的中位数
阅读量:110 次
发布时间:2019-02-26

本文共 6553 字,大约阅读时间需要 21 分钟。

解法一:暴力破解法

简单粗暴,先将两个数组合并,两个有序数组的合并也是归并排序中的一部分。然后根据奇数,还是偶数,返回中位数。

代码

class Solution {       public double findMedianSortedArrays(int[] nums1, int[] nums2) {           int[] nums;        int m = nums1.length;        int n = nums2.length;        nums = new int[m + n];        if (m == 0) {               if (n % 2 == 0) {                   return (nums2[n / 2 - 1] + nums2[n / 2]) / 2.0;            } else {                   return nums2[n / 2];            }        }        if (n == 0) {               if (m % 2 == 0) {                   return (nums1[m / 2 - 1] + nums1[m / 2]) / 2.0;            } else {                   return nums1[m / 2];            }        }        int count = 0;        int i = 0, j = 0;        while (count != (m + n)) {               if (i == m) {                   while (j != n) {                       nums[count++] = nums2[j++];                }                break;            }            if (j == n) {                   while (i != m) {                       nums[count++] = nums1[i++];                }                break;            }            if (nums1[i] < nums2[j]) {                   nums[count++] = nums1[i++];            } else {                   nums[count++] = nums2[j++];            }        }        if (count % 2 == 0) {               return (nums[count / 2 - 1] + nums[count / 2]) / 2.0;        } else {               return nums[count / 2];        }    }}

复杂度分析

  • 时间复杂度:遍历全部数组(m+n)(m+n)
  • 空间复杂度:开辟了一个数组,保存合并后的两个数组O(m+n)O(m+n)

解法二:二分查找

给定两个有序数组,要求找到两个有序数组的中位数,最直观的思路有以下两种:

  • 使用归并的方式,合并两个有序数组,得到一个大的有序数组。大的有序数组的中间位置的元素,即为中位数。
  • 不需要合并两个有序数组,只要找到中位数的位置即可。由于两个数组的长度已知,因此中位数对应的两个数组的下标之和也是已知的。维护两个指针,初始时分别指向两个数组的下标 00 的位置,每次将指向较小值的指针后移一位(如果一个指针已经到达数组末尾,则只需要移动另一个数组的指针),直到到达中位数的位置。

假设两个有序数组的长度分别为 mm 和 nn,上述两种思路的复杂度如何?

第一种思路的时间复杂度是 O(m+n),空间复杂度是O(m+n)。第二种思路虽然可以将空间复杂度降到 O(1),但是时间复杂度仍是O(m+n)。

如何把时间复杂度降低到 O(\log(m+n))O(log(m+n)) 呢?如果对时间复杂度的要求有 \loglog,通常都需要用到二分查找,这道题也可以通过二分查找实现。

根据中位数的定义,当 m+n 是奇数时,中位数是两个有序数组中的第 (m+n)/2 个元素,当m+n 是偶数时,中位数是两个有序数组中的第 (m+n)/2 个元素和第 (m+n)/2+1 个元素的平均值。因此,这道题可以转化成寻找两个有序数组中的第 k 小的数,其中 k 为(m+n)/2 或 (m+n)/2+1。

假设两个有序数组分别是 A 和 B。要找到第 kk 个元素,我们可以比较 \A[k/2−1] 和B[k/2−1],其中 // 表示整数除法。由于 A[k/2−1] 和 B[k/2−1] 的前面分别有 A[0…k/2−2] 和 B[0…k/2−2],即 k/2−1 个元素,对于 A[k/2−1] 和 B[k/2−1] 中的较小值,最多只会有(k/2−1)+(k/2−1)≤k−2 个元素比它小,那么它就不能是第 k 小的数了。

因此我们可以归纳出三种情况:

  • 如果 A[k/2−1]<B[k/2−1],则比 A[k/2−1] 小的数最多只有 A 的前 k/2−1 个数和 B 的前 k/2−1 个数,即比 A[k/2−1] 小的数最多只有 k−2 个,因此 A[k/2−1] 不可能是第k 个数,A[0] 到 A[k/2−1] 也都不可能是第k 个数,可以全部排除。

  • 如果 A[k/2−1]>B[k/2−1],则可以排除B[0] 到 B[k/2−1]。

  • 如果 A[k/2−1]=B[k/2−1],则可以归入第一种情况处理。

img

可以看到,比较 A[k/2−1] 和 B[k/2−1] 之后,可以排除 k/2 个不可能是第k 小的数,查找范围缩小了一半。同时,我们将在排除后的新数组上继续进行二分查找,并且根据我们排除数的个数,减少 k 的值,这是因为我们排除的数都不大于第 k 小的数。

有以下三种情况需要特殊处理:

  • 如果 A[k/2−1] 或者 ]B[k/2−1] 越界,那么我们可以选取对应数组中的最后一个元素。在这种情况下,我们必须根据排除数的个数减少k 的值,而不能直接将 kk 减去k/2。

  • 如果一个数组为空,说明该数组中的所有元素都被排除,我们可以直接返回另一个数组中第 k 小的元素。

  • 如果k=1,我们只要返回两个数组首元素的最小值即可。

用一个例子说明上述算法。假设两个有序数组如下:

A: 1 3 4 9B: 1 2 3 4 5 6 7 8 9

两个有序数组的长度分别是 4 和 9,长度之和是 13,中位数是两个有序数组中的第 7 个元素,因此需要找到第 k=7 个元素。

比较两个有序数组中下标为 k/2−1=2 的数,即 A[2] 和 B[2],如下面所示:

A: 1 3 4 9       ↑B: 1 2 3 4 5 6 7 8 9       ↑

由于 A[2]>B[2],因此排除 B[0] 到 B[2],即数组}B 的下标偏移(offset)变为 3,同时更新 k 的值:k=k−k/2=4。

下一步寻找,比较两个有序数组中下标为k/2−1=1 的数,即 A[1] 和 B[4],如下面所示,其中方括号部分表示已经被排除的数。

A: 1 3 4 9     ↑B: [1 2 3] 4 5 6 7 8 9             ↑

由于 A[1]<B[4],因此排除 A[0] 到 A[1],即数组 A 的下标偏移变为 2,同时更新 k 的值:k=k−k/2=2。

下一步寻找,比较两个有序数组中下标为k/2−1=0 的数,即比较A[2] 和 ]B[3],如下面所示,其中方括号部分表示已经被排除的数。

A: [1 3] 4 9         ↑B: [1 2 3] 4 5 6 7 8 9           ↑

由于 A[2]=B[3],根据之前的规则,排除 A 中的元素,因此排除A[2],即数组 A 的下标偏移变为3,同时更新k 的值:k=k−k/2=1。

由于 k 的值变成 1,因此比较两个有序数组中的未排除下标范围内的第一个数,其中较小的数即为第 k 个数,由于 A[3]>B[3],因此第k 个数是 B[3]=4。

A: [1 3 4] 9           ↑B: [1 2 3] 4 5 6 7 8 9           ↑

代码

class Solution {       public double findMedianSortedArrays(int[] nums1, int[] nums2) {           int length1 = nums1.length, length2 = nums2.length;        int totalLength = length1 + length2;        if (totalLength % 2 == 1) {               int midIndex = totalLength / 2;            double median = getKthElement(nums1, nums2, midIndex + 1);            return median;        } else {               int midIndex1 = totalLength / 2 - 1, midIndex2 = totalLength / 2;            double median = (getKthElement(nums1, nums2, midIndex1 + 1) + getKthElement(nums1, nums2, midIndex2 + 1)) / 2.0;            return median;        }    }    public int getKthElement(int[] nums1, int[] nums2, int k) {           /* 主要思路:要找到第 k (k>1) 小的元素,那么就取 pivot1 = nums1[k/2-1] 和 pivot2 = nums2[k/2-1] 进行比较         * 这里的 "/" 表示整除         * nums1 中小于等于 pivot1 的元素有 nums1[0 .. k/2-2] 共计 k/2-1 个         * nums2 中小于等于 pivot2 的元素有 nums2[0 .. k/2-2] 共计 k/2-1 个         * 取 pivot = min(pivot1, pivot2),两个数组中小于等于 pivot 的元素共计不会超过 (k/2-1) + (k/2-1) <= k-2 个         * 这样 pivot 本身最大也只能是第 k-1 小的元素         * 如果 pivot = pivot1,那么 nums1[0 .. k/2-1] 都不可能是第 k 小的元素。把这些元素全部 "删除",剩下的作为新的 nums1 数组         * 如果 pivot = pivot2,那么 nums2[0 .. k/2-1] 都不可能是第 k 小的元素。把这些元素全部 "删除",剩下的作为新的 nums2 数组         * 由于我们 "删除" 了一些元素(这些元素都比第 k 小的元素要小),因此需要修改 k 的值,减去删除的数的个数         */        int length1 = nums1.length, length2 = nums2.length;        int index1 = 0, index2 = 0;        int kthElement = 0;        while (true) {               // 边界情况            if (index1 == length1) {                   return nums2[index2 + k - 1];            }            if (index2 == length2) {                   return nums1[index1 + k - 1];            }            if (k == 1) {                   return Math.min(nums1[index1], nums2[index2]);            }                        // 正常情况            int half = k / 2;            int newIndex1 = Math.min(index1 + half, length1) - 1;            int newIndex2 = Math.min(index2 + half, length2) - 1;            int pivot1 = nums1[newIndex1], pivot2 = nums2[newIndex2];            if (pivot1 <= pivot2) {                   k -= (newIndex1 - index1 + 1);                index1 = newIndex1 + 1;            } else {                   k -= (newIndex2 - index2 + 1);                index2 = newIndex2 + 1;            }        }    }}

复杂度分析

  • 时间复杂度:O(log(m+n)),其中 m 和 n 分别是数组 nums 1和 nums2的长度。初始时有k=(m+n)/2 或 k=(m+n)/2+1,每一轮循环可以将查找范围减少一半,因此时间复杂度是 O(log(m+n))。
  • 空间复杂度:O(1)。

解法三:划分数组

说明

方法一的时间复杂度已经很优秀了,但本题存在时间复杂度更低的一种方法。这里给出推导过程,勇于挑战自己的读者可以进行尝试。

思路与算法

为了使用划分的方法解决这个问题,需要理解「中位数的作用是什么」。在统计中,中位数被用来:

将一个集合划分为两个长度相等的子集,其中一个子集中的元素总是大于另一个子集中的元素。

如果理解了中位数的划分作用,就很接近答案了。

(还没完全消化,待补充)

报错:解答错误??

class Solution {       public double findMedianSortedArrays(int[] nums1, int[] nums2) {           int n=nums1.length;        int m=nums2.length;        int[] arr=new int[n+m];        int n1=0,n2=0;//;两个数组指针        for(int i=0;i

img

转载地址:http://qtqk.baihongyu.com/

你可能感兴趣的文章
NIFI从MySql中增量同步数据_通过Mysql的binlog功能_实时同步mysql数据_配置数据路由_生成插入Sql语句_实际操作02---大数据之Nifi工作笔记0041
查看>>
NIFI从MySql中离线读取数据再导入到MySql中_03_来吧用NIFI实现_数据分页获取功能---大数据之Nifi工作笔记0038
查看>>
NIFI从MySql中离线读取数据再导入到MySql中_不带分页处理_01_QueryDatabaseTable获取数据_原0036---大数据之Nifi工作笔记0064
查看>>
NIFI从MySql中离线读取数据再导入到MySql中_无分页功能_02_转换数据_分割数据_提取JSON数据_替换拼接SQL_添加分页---大数据之Nifi工作笔记0037
查看>>
NIFI从PostGresql中离线读取数据再导入到MySql中_带有数据分页获取功能_不带分页不能用_NIFI资料太少了---大数据之Nifi工作笔记0039
查看>>
nifi使用过程-常见问题-以及入门总结---大数据之Nifi工作笔记0012
查看>>
NIFI分页获取Mysql数据_导入到Hbase中_并可通过phoenix客户端查询_含金量很高的一篇_搞了好久_实际操作05---大数据之Nifi工作笔记0045
查看>>
NIFI分页获取Postgresql数据到Hbase中_实际操作---大数据之Nifi工作笔记0049
查看>>
NIFI同步MySql数据_到SqlServer_错误_驱动程序无法通过使用安全套接字层(SSL)加密与SQL Server_Navicat连接SqlServer---大数据之Nifi工作笔记0047
查看>>
Nifi同步过程中报错create_time字段找不到_实际目标表和源表中没有这个字段---大数据之Nifi工作笔记0066
查看>>
NIFI大数据进阶_FlowFile拓扑_对FlowFile内容和属性的修改删除添加_介绍和描述_以及实际操作---大数据之Nifi工作笔记0023
查看>>
NIFI大数据进阶_FlowFile生成器_GenerateFlowFile处理器_ReplaceText处理器_处理器介绍_处理过程说明---大数据之Nifi工作笔记0019
查看>>
NIFI大数据进阶_Json内容转换为Hive支持的文本格式_操作方法说明_01_EvaluteJsonPath处理器---大数据之Nifi工作笔记0031
查看>>
NIFI大数据进阶_Kafka使用相关说明_实际操作Kafka消费者处理器_来消费kafka数据---大数据之Nifi工作笔记0037
查看>>
NIFI大数据进阶_Kafka使用相关说明_实际操作Kafka生产者---大数据之Nifi工作笔记0036
查看>>
NIFI大数据进阶_NIFI的模板和组的使用-介绍和实际操作_创建组_嵌套组_模板创建下载_导入---大数据之Nifi工作笔记0022
查看>>
NIFI大数据进阶_NIFI监控功能实际操作_Summary查看系统和处理器运行情况_viewDataProvenance查看_---大数据之Nifi工作笔记0026
查看>>
NIFI大数据进阶_NIFI监控的强大功能介绍_处理器面板_进程组面板_summary监控_data_provenance事件源---大数据之Nifi工作笔记0025
查看>>
NIFI大数据进阶_NIFI集群知识点_认识NIFI集群以及集群的组成部分---大数据之Nifi工作笔记0014
查看>>
NIFI大数据进阶_NIFI集群知识点_集群的断开_重连_退役_卸载_总结---大数据之Nifi工作笔记0018
查看>>